HADRON SPECTRUM COLLABORATION

Baryon spectroscopy from lattice QCD

- Goal: Determine the hadron mass spectrum of QCD
- New feature: Spin identification for \mathbf{N}^{*} and Δ states
- R. G. Edwards, J. J. Dudek, D. G. Richards and S. J. Wallace, [arXiv:1104.5152].
- Comparisons with $S U(6) \otimes O(3)$
- Conclusions

HADRON SPECTRUM COLLABORATION

Lattice parameters

- $N_{f}=2+1$ QCD
- Gauge action: Symanzik-improved
- Fermion action: Clover-improved Wilson
- Anisotropic: $a_{s}=0.122 \mathrm{fm}, a_{t}=0.035 \mathrm{fm}$

ensemble	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
m_{ℓ}	-.0840	-.0830	-.0808
m_{s}	-.0743	-.0743	-.0743
Volume	$\mathbf{1 6}^{3} \times \mathbf{1 2 8}^{28}$	$\mathbf{1 6}^{3} \times \mathbf{1 2 8}$	$\mathbf{1 6}^{3} \times \mathbf{1 2 8}$
Physical volume	$(2 \mathrm{fm})^{3}$	$(2 \mathrm{fm})^{3}$	$(2 \mathrm{fm})^{3}$
$N_{\text {cfgs }}$	344	570	481
$t_{\text {sources }}$	8	5	7
m_{π}	$\mathbf{0 . 0 6 9 1 (6)}$	$\mathbf{0 . 0 7 9 7 (6)}$	$\mathbf{0 . 0 9 9 6 (6)}$
m_{K}	$\mathbf{0 . 0 9 7 0 (5)}$	$\mathbf{0 . 1 0 3 2 (5)}$	$\mathbf{0 . 1 1 4 9 (6)}$
m_{Ω}	$\mathbf{0 . 2 9 5 1 (2 2)}$	$\mathbf{0 . 3 0 4 0 (8)}$	$\mathbf{0 . 3 2 0 0 (7)}$
$m_{\pi}(\mathrm{MeV})$	396	444	524

HADRON SPECTRUM COLLABORATION

H.-W. Lin et al. Phys. Rev. D79, 034502 (2009).

Tuning of m_{ℓ} and m_{s} yields a good account of hadron masses

HADRON SPECTRUM COLLABORATION

Limitations

- Three-quark operators:
- No multiparticle operators
- No clear evidence for multiparticle states: πN, etc.
- One (small) volume and one total momentum $P=0$: No extrapolations or δ 's
- $m_{\pi}=396,444,524 \mathrm{MeV}:$ Energies generally are high
- The three-quark states essentially are stable; decays are suppressed.

Computational Resources

- USQCD allocations
- Jefferson Laboratory GPUs and HPC clusters
- and the Chroma software system (Edwards et al.)

HADRON SPECTRUM COLLABORATION

Standard recipe for lattice spectra

- Use interpolating field operators $B_{j}^{\dagger}(\mathbf{x}, t)$ to create three-quark baryons.
- Construct operators so that they transform as irreps of cubic group
- Make smooth operators i.e., smear them over many lattice sites
- Project operators to low eigenmodes of covariant lattice Laplacian
- Peardon, et al., Phys. Rev. D80, 054506 (2009)
- Matrices of correlation functions: $C_{i j}(t)=\sum_{x}<0\left|B_{i}(\mathbf{x}, t) B_{j}^{\dagger}(\mathbf{0}, 0)\right| 0>$
$-C_{i j}(t) \sim<i\left|e^{-H t}\right| j>$
- Diagonalize matrices to get principal eigenvalues: $\lambda_{\mathfrak{n}}\left(t, t_{0}\right)$
- Principal eigenvalues separate the decays of \mathbf{N} eigenstates: $e^{-m_{\mathfrak{n}}\left(t-t_{0}\right)}$
- Fit them \& extract masses, m_{n}.

HADRON SPECTRUM COLLABORATION

Contamination from states outside the diagonalization space

Expect $\lambda_{\mathfrak{n}}(t)=e^{-m_{\mathfrak{n}}\left(t-t_{0}\right)}+\sum_{k>N} B_{k} e^{-m_{k}\left(t-t_{0}\right)}+\cdots$ Two-exponential fits to principal eigenvalues

$$
\lambda_{f i t}(t)=\left(1-A_{\mathfrak{n}}\right) e^{-\mathrm{m}_{\mathfrak{n}}\left(t-t_{0}\right)}+A_{\mathfrak{n}}^{\prime} e^{-m_{\mathfrak{n}}^{\prime}\left(t-t_{0}\right)}
$$

Ratio plots to show the goodness of fits

$$
\frac{\lambda_{f i t}(t)}{e^{-\mathrm{m}_{\mathrm{n}}\left(t-t_{0}\right)}}
$$

Ratio tends to constant at large t

hadron SPECTRUM collaboration

Contaminations are fit well by the 2nd exponential

HADRON SPECTRUM COLLABORATION

N* spectrum in irreps of cubic group: $m_{\pi}=396 \mathrm{MeV}$

HADRON SPECTRUM COLLABORATION

Results of standard recipe

- Lots of states and lots of degeneracies
- Spins are ambiguous
- Degenerate states in G_{1}, H, G_{2} irreps imply a $J=\frac{7}{2}$ state
- or accidentally degenerate $J=\frac{1}{2}$ and $J=\frac{5}{2}$ states
- Spin identification fails because:
- there are too many degenerate states to identify the subductions of high spins
- lattice energies don't provide sufficient information

HADRON SPECTRUM COLLABORATION

New recipe to identify spins

- Use operators with known spins in continuum limit
- Incorporate covariant derivatives to realize orbital angular momenta
- Subduce the operators to irreps of cubic group
- Use spectral representation of matrices: $C_{i j}(t)=\sum_{\mathfrak{n}} Z_{i}^{n *} Z_{i}^{n} e^{-m_{n} t}$
- $Z_{i}^{\mathfrak{n}}=<\mathfrak{n}\left|B_{i}^{\dagger}(\mathbf{0}, 0)\right| 0>$ is the overlap of operator i with state \mathfrak{n}
- Use $Z_{i}^{\mathfrak{n}}$ to identify spin: spin of state \mathfrak{n} is J when largest \mathbf{Z} 's are for operators subduced from spin J
- The different lattice irreps give approximately the same overlaps
- $E_{\mathfrak{n}}$ is the energy of a state of good J.

HADRON SPECTRUM COLLABORATION*

Construction of operators with good J in continuum

- Mesons: Dudek, et al., Phys.Rev.D80:054506,2009
- Baryons: Color singlet structure for 3 quarks, symmetric in space \& spin
- $\mathbf{J}=\mathbf{L}+\mathbf{S}$ with
$-\mathrm{S}=\frac{1}{2}$ or $\frac{3}{2}$ from quark spins
- $L=1$ or 2 from covariant derivatives
$-\mathrm{J}=\frac{1}{2}, \frac{3}{2}, \frac{5}{2}$ and $\frac{7}{2}$
- Upper $(\rho=+)$ and lower $(\rho=-)$ components of Dirac spinors
- Lots of operators $\mathcal{O}^{[J, M]}$ with good spin in continuum limit
- Feynman, Kislinger and Ravndal formalism for quark states applied to operator construction, except $S U(12) \otimes O(3)$

HADRON SPECTRUM COLLABORATION

Subduction to irreps of cubic group

- Cubic group irreps Λ and rows r provide orthogonal basis on lattice
- In quantum mechanics, subduction is a change of basis $|J, M\rangle \rightarrow|\Lambda, r ; J\rangle$.
- $|\Lambda, r ; J\rangle=\sum_{M}|J, M\rangle\langle J, M \mid \Lambda, r ; J\rangle$

$$
=\sum_{M}|J, M\rangle S_{\Lambda, r}^{J, M}
$$

- Subduction matrices: $S_{\Lambda, r}^{J, M}$
- Subduced operators: $\mathcal{O}^{[\Lambda, r ; J]}=\sum_{M} \mathcal{O}^{[J, M]} S_{\Lambda, r}^{J, M}$
- When rotational symmetry is broken weakly, $\langle 0| \mathcal{O}^{[\Lambda, r ; J]}(t) \mathcal{O}^{\left[\Lambda, r ; J^{\prime}\right] \dagger}(0) \mid 0>\approx \delta_{J, J^{\prime}}$ is block diagonal in J.

Matrix $C_{i j}$ is block diagonal approximately

Magnitude of matrix elements in a matrix of correlation functions at timeslice 5.

HADRON SPECTRUM COLLABORATION*

Reasons for approximate rotational invariance

- Rotational symmetry is broken at $\mathcal{O}\left(\mathbf{a}^{2}\right)$ by lattice action
- Lattice spacing is 0.12 fm
- Typical hadron size is 1 fm
- Smearing makes operators smooth on the hadron size scale
- Estimate: $\mathcal{O}\left(a^{2}\right) \approx\left(\frac{0.12 f m}{1.0 f m}\right)^{2} \approx 0.015$
- For hadrons, rotational symmetry is broken weakly.

Spin identification: $Z_{i}^{\mathfrak{n}}$ values show which operators dominate each state

 - $\left(N_{M} \otimes\left(\frac{3}{2}\right)_{M}^{1} \otimes D_{L=-5}^{10}\right)^{[D]}$

$G_{2 u}$

Spin identification: Nearly the same Z in each

 lattice irrep that belongs to the subduction of $J$$$
\mathrm{J}=\frac{5}{2}
$$

$J=\frac{7}{2}$

Joint fits of $G_{1 u}, H_{u}, G_{2 u}$ principal correlators to a common mass determine the $\mathbf{J}=\frac{7}{2}^{-}$energies

Spin identification of baryon excited states

- The spin of a lattice excited state is equal to J when the state is created predominantly by operators subduced from continuum spin J.
- Approximately the same Z value is obtained in each lattice irrep that belongs to the subduction of a single J value.
- Z values often are large only for a few operators, allowing interpretation of the states
- Spin identification is reliable at the scale of hadrons

Spectral test of approximate rotational invariance

- Rotational invariance implies zero couplings between different J's, so $C \propto \delta_{J, J^{\prime}}$ is block diagonal
- We find small violations of block diagonality in C.
- Does the spectrum exhibit approximate rotational invariance?
- Calculate energies including $J \neq J^{\prime}$ couplings
- Calculate energies omitting $J \neq J^{\prime}$ couplings

Approximate rotational invariance in spectrum,

\approx same energies with and without $J \neq J^{\prime}$ couplings

Lattice \mathbf{N}^{*} excited states vs. $\mathbf{J}^{P}: m_{\pi}=396 \mathrm{MeV}$

Lattice N^{*} spectrum: bands with + and - parity.

Overall pattern of \mathbf{N}^{*} states

Expt. **** *** **

Many more states in the lattice spectrum.

Lattice Δ excited states vs. $\mathrm{J}^{P}: m_{\pi}=396 \mathrm{MeV}$

Lattice Δ spectrum : bands of + and - parity states

Patterns of Δ states

Expt. $* * * * \quad * * * \quad * *$

Lattice

Many more states in the lattice spectrum.

Comparison of lattice results for Roper resonance

see also D. Leinweber talk in session I-C today at 17:05

Does the Roper resonance have a complex structure?

Conclusions

- Spins are identified reliably up to $J=\frac{7}{2}$
- Covariant derivatives provide orbital angular momenta
- Approximate rotational invariance is realized at the scale of hadrons
- Spectral overlaps Z identify which J values dominate a state
- Low \mathbf{N}^{*} and Δ bands: same states as $S U(6) \otimes O(3)$ based on $\rho=+$ Dirac spiors
- Patterns of lattice baryonic states are similar to patterns of physical resonance states.
- Lots of lattice states; no signs of chiral restoration

The path forward

- No multiparticle states have been identified so far using three-quark operators
- Multiparticle operators (e.g, $\pi N, \pi \pi N$) must be added to realize significant couplings of three-quark states and their decay products.
- Moving operators and larger volumes will allow determination of elastic phase shifts using Luscher's formalism.
- Much remains to be learned as m_{π} is lowered toward the physical limit

Nstar Workshop May 2011

Nstar Workshop May 2011

