Baryon spectroscopy from lattice QCD

- Goal: Determine the hadron mass spectrum of QCD
- \bullet New feature: Spin identification for N* and Δ states
 - R. G. Edwards, J. J. Dudek, D. G. Richards and S. J. Wallace, [arXiv:1104.5152].
- Comparisons with $SU(6)\otimes O(3)$
- Conclusions

Lattice parameters

- $N_f = 2 + 1 \text{ QCD}$
 - Gauge action: Symanzik-improved
 - Fermion action: Clover-improved Wilson
- Anisotropic: $a_s = 0.122$ fm, $a_t = 0.035$ fm

ensemble	1	2	3
m_ℓ	0840	0830	0808
m_s	0743	0743	0743
Volume	$16^3 imes 128$	$16^3 imes 128$	$16^3 imes 128$
Physical volume	(2 fm) ³	(2 fm) ³	(2 fm) ³
$N_{ m cfgs}$	344	570	481
$t_{ m sources}$	8	5	7
m_{π}	0.0691(6)	0.0797(6)	0.0996(6)
m_K	0.0970(5)	0.1032(5)	0.1149(6)
m_{Ω}	0.2951(22)	0.3040(8)	0.3200(7)
m_{π} (MeV)	396	444	524

HADRON SPECTRUM COLLABORATION H.-W. Lin *et al.* Phys. Rev. D79, 034502 (2009).

Tuning of m_{ℓ} and m_s yields a good account of hadron masses

Limitations

- Three-quark operators:
 - No multiparticle operators
 - No clear evidence for multiparticle states: πN , etc.
- One (small) volume and one total momentum P = 0: No extrapolations or δ 's
- $m_{\pi} =$ **396, 444, 524 MeV : Energies generally are high**
- The three-quark states essentially are stable; decays are suppressed.

Computational Resources

- USQCD allocations
- Jefferson Laboratory GPUs and HPC clusters
- and the Chroma software system (Edwards *et al.*)

Standard recipe for lattice spectra

- Use interpolating field operators $B_j^{\dagger}(\mathbf{x},t)$ to create three-quark baryons.
- Construct operators so that they transform as irreps of cubic group
- Make smooth operators i.e., smear them over many lattice sites
 - Project operators to low eigenmodes of covariant lattice Laplacian
 - Peardon, et al., Phys. Rev. D80, 054506 (2009)
- Matrices of correlation functions: $C_{ij}(t) = \sum_{x} \langle 0|B_i(\mathbf{x},t)B_j^{\dagger}(\mathbf{0},0)|0 \rangle$
 - $C_{ij}(t) \sim < i|e^{-Ht}|j>$
- Diagonalize matrices to get principal eigenvalues: $\lambda_n(t, t_0)$
 - Principal eigenvalues separate the decays of N eigenstates: $e^{-m_{\mathfrak{n}}(t-t_0)}$
- Fit them & extract masses, m_n .

Contamination from states outside the diagonalization space

Expect $\lambda_{n}(t) = e^{-m_{n}(t-t_{0})} + \sum_{k>N} B_{k}e^{-m_{k}(t-t_{0})} + \cdots$

Two-exponential fits to principal eigenvalues

$$\lambda_{fit}(t) = (1 - A_{\mathfrak{n}})e^{-m_{\mathfrak{n}}(t-t_0)} + A'_{\mathfrak{n}}e^{-m'_{\mathfrak{n}}(t-t_0)}$$

Ratio plots to show the goodness of fits

 $\frac{\lambda_{fit}(t)}{e^{-\mathbf{m}_{n}(t-t_{0})}}$

Ratio tends to constant at large t

Contaminations are fit well by the 2nd exponential

Results of standard recipe

- Lots of states and lots of degeneracies
- Spins are ambiguous
 - Degenerate states in G_1, H, G_2 irreps imply a $J = \frac{7}{2}$ state
 - or accidentally degenerate $J = \frac{1}{2}$ and $J = \frac{5}{2}$ states
- Spin identification fails because:
 - there are too many degenerate states to identify the subductions of high spins
 - lattice energies don't provide sufficient information

New recipe to identify spins

- Use operators with known spins in continuum limit
 - Incorporate covariant derivatives to realize orbital angular momenta
- Subduce the operators to irreps of cubic group
- Use spectral representation of matrices: $C_{ij}(t) = \sum_{\mathfrak{n}} Z_i^{\mathfrak{n}*} Z_i^{\mathfrak{n}} e^{-m_{\mathfrak{n}}t}$
- $Z_i^{\mathfrak{n}} = <\mathfrak{n}|B_i^{\dagger}(\mathbf{0},0)|0>$ is the overlap of operator i with state \mathfrak{n}
- Use Z_i^n to identify spin: spin of state n is J when largest Z's are for operators subduced from spin J
 - The different lattice irreps give approximately the same overlaps
 - E_n is the energy of a state of good J.

Construction of operators with good J in continuum

- Mesons: Dudek, et al., Phys.Rev.D80:054506,2009
- Baryons: Color singlet structure for 3 quarks, symmetric in space & spin
- $\mathbf{J} = \mathbf{L} + \mathbf{S}$ with
 - S = $\frac{1}{2}$ or $\frac{3}{2}$ from quark spins - L = 1 or 2 from covariant derivatives - J = $\frac{1}{2}$, $\frac{3}{2}$, $\frac{5}{2}$ and $\frac{7}{2}$ - Upper (ρ = +) and lower (ρ = -) components of Dirac spinors
- Lots of operators $\mathcal{O}^{[J,M]}$ with good spin in continuum limit
- Feynman, Kislinger and Ravndal formalism for quark states applied to operator construction, except $SU(12)\otimes O(3)$

Subduction to irreps of cubic group

- Cubic group irreps Λ and rows r provide orthogonal basis on lattice
- In quantum mechanics, subduction is a change of basis $|J,M
 angle
 ightarrow|\Lambda,r;J
 angle$.
- $|\Lambda, r; J\rangle = \sum_{M} |J, M\rangle \langle J, M | \Lambda, r; J\rangle$ = $\sum_{M} |J, M\rangle \ S^{J,M}_{\Lambda,r}.$
- Subduction matrices: $S_{\Lambda,r}^{J,M}$
- Subduced operators: $\mathcal{O}^{[\Lambda,r;J]} = \sum_M \mathcal{O}^{[J,M]} S^{J,M}_{\Lambda,r}$
- When rotational symmetry is broken weakly,

 $\langle 0 | \mathcal{O}^{[\Lambda,r;J]}(t) \mathcal{O}^{[\Lambda,r;J']\dagger}(0) | 0 > \approx \delta_{J,J'}$ is block diagonal in J.

Matrix C_{ij} is block diagonal approximately

Magnitude of matrix elements in a matrix of correlation functions at timeslice 5.

Reasons for approximate rotational invariance

- Rotational symmetry is broken at $\mathcal{O}(a^2)$ by lattice action
- Lattice spacing is 0.12 fm
- Typical hadron size is 1 fm
- Smearing makes operators smooth on the hadron size scale
- Estimate: $\mathcal{O}(a^2) \approx \left(\frac{0.12fm}{1.0fm}\right)^2 \approx 0.015$
- For hadrons, rotational symmetry is broken weakly.

Spin identification: Z_i^n values show which operators dominate each state

$$\begin{pmatrix} N_{\rm M} \otimes \left(\frac{1}{2}^{-}\right)_{\rm M}^{I} \otimes D_{L=1,{\rm M}}^{[1]} \end{pmatrix}^{J=\frac{3}{2}} & \left(N_{\rm M} \otimes \left(\frac{3}{2}^{+}\right)_{\rm S}^{1} \otimes D_{L=1,{\rm M}}^{[1]} \right)^{J=\frac{3}{2}} & \left(N_{\rm M} \otimes \left(\frac{1}{2}^{-}\right)_{\rm M}^{I} \otimes D_{L=2,{\rm S}}^{[2]} \right)^{J=\frac{3}{2}} & \left(N_{\rm M} \otimes \left(\frac{3}{2}^{-}\right)_{\rm M}^{I} \otimes D_{L=2,{\rm S}}^{[2]} \right)^{J=\frac{3}{2}} \\ & \left(N_{\rm M} \otimes \left(\frac{3}{2}^{+}\right)_{\rm S}^{1} \otimes D_{L=1,{\rm M}}^{[2]} \right)^{J=\frac{5}{2}} & \left(N_{\rm M} \otimes \left(\frac{1}{2}^{-}\right)_{\rm M}^{I} \otimes D_{L=2,{\rm S}}^{[2]} \right)^{J=\frac{3}{2}} & \left(N_{\rm M} \otimes \left(\frac{3}{2}^{-}\right)_{\rm M}^{I} \otimes D_{L=2,{\rm S}}^{[2]} \right)^{J=\frac{5}{2}} \\ & \left(N_{\rm M} \otimes \left(\frac{3}{2}^{-}\right)_{\rm M}^{I} \otimes D_{L=2,{\rm S}}^{[2]} \right)^{J=\frac{5}{2}} & \left(N_{\rm M} \otimes \left(\frac{3}{2}^{-}\right)_{\rm M}^{I} \otimes D_{L=2,{\rm S}}^{[2]} \right)^{J=\frac{5}{2}} \\ & \left(N_{\rm M} \otimes \left(\frac{3}{2}^{-}\right)_{\rm M}^{I} \otimes D_{L=2,{\rm S}}^{[2]} \right)^{J=\frac{5}{2}} \\ & \left(N_{\rm M} \otimes \left(\frac{3}{2}^{-}\right)_{\rm M}^{I} \otimes D_{L=2,{\rm S}}^{[2]} \right)^{J=\frac{5}{2}} \\ & \left(N_{\rm M} \otimes \left(\frac{3}{2}^{-}\right)_{\rm M}^{I} \otimes D_{L=2,{\rm S}}^{[2]} \right)^{J=\frac{5}{2}} \\ & \left(N_{\rm M} \otimes \left(\frac{3}{2}^{-}\right)_{\rm M}^{I} \otimes D_{L=2,{\rm S}}^{[2]} \right)^{J=\frac{5}{2}} \\ & \left(N_{\rm M} \otimes \left(\frac{3}{2}^{-}\right)_{\rm M}^{I} \otimes D_{L=2,{\rm S}}^{[2]} \right)^{J=\frac{5}{2}} \\ & \left(N_{\rm M} \otimes \left(\frac{3}{2}^{-}\right)_{\rm M}^{I} \otimes D_{L=2,{\rm S}}^{[2]} \right)^{J=\frac{5}{2}} \\ & \left(N_{\rm M} \otimes \left(\frac{3}{2}^{-}\right)_{\rm M}^{I} \otimes D_{L=2,{\rm S}}^{[2]} \right)^{J=\frac{5}{2}} \\ & \left(N_{\rm M} \otimes \left(\frac{3}{2}^{-}\right)_{\rm M}^{I} \otimes D_{L=2,{\rm S}}^{[2]} \right)^{J=\frac{5}{2}} \\ & \left(N_{\rm M} \otimes \left(\frac{3}{2}^{-}\right)_{\rm M}^{I} \otimes D_{L=2,{\rm S}}^{I} \right)^{J=\frac{5}{2}} \\ & \left(N_{\rm M} \otimes \left(\frac{3}{2}^{-}\right)_{\rm M}^{I} \otimes D_{L=2,{\rm S}}^{I} \right)^{J=\frac{5}{2}} \\ & \left(N_{\rm M} \otimes \left(\frac{3}{2}^{-}\right)_{\rm M}^{I} \otimes D_{L=2,{\rm S}}^{I} \right)^{J=\frac{5}{2}} \\ & \left(N_{\rm M} \otimes \left(\frac{3}{2}^{-}\right)_{\rm M}^{I} \otimes D_{L=2,{\rm S}}^{I} \right)^{J=\frac{5}{2}} \\ & \left(N_{\rm M} \otimes \left(\frac{3}{2}^{-}\right)_{\rm M}^{I} \otimes D_{L=2,{\rm S}}^{I} \right)^{J=\frac{5}{2}} \\ & \left(N_{\rm M} \otimes \left(\frac{3}{2}^{-}\right)_{\rm M}^{I} \otimes D_{L=2,{\rm S}}^{I} \right)^{J=\frac{5}{2}} \\ & \left(N_{\rm M} \otimes \left(\frac{3}{2}^{-}\right)_{\rm M}^{I} \otimes D_{L=2,{\rm S}}^{I} \right)^{J=\frac{5}{2}} \\ & \left(N_{\rm M} \otimes \left(\frac{3}{2}^{-}\right)_{\rm M}^{I} \otimes D_{L=2,{\rm S}}^{I} \right)^{J=\frac{5}{2}} \\ & \left(N_{\rm M} \otimes \left(\frac{3}{2}^{-}\right)_{\rm M}^{I} \otimes D_{L=2,{\rm S}}^{I} \right)^{J=\frac{5}{2}}$$

Spin identification: Nearly the same Z in each lattice irrep that belongs to the subduction of J $J = \frac{5}{2}$ $J = \frac{7}{2}$

Joint fits of G_{1u}, H_u, G_{2u} principal correlators to a common mass determine the $J = \frac{7}{2}$ energies

Spin identification of baryon excited states

- The spin of a lattice excited state is equal to *J* when the state is created predominantly by operators subduced from continuum spin *J*.
- Approximately the same Z value is obtained in each lattice irrep that belongs to the subduction of a single J value.
- Z values often are large only for a few operators, allowing interpretation of the states
- Spin identification is reliable at the scale of hadrons

Spectral test of approximate rotational invariance

- Rotational invariance implies zero couplings between different J's, so $C\propto \delta_{J,J'}$ is block diagonal
- We find small violations of block diagonality in C.
- Does the spectrum exhibit approximate rotational invariance?
- Calculate energies including $J \neq J'$ couplings

• Calculate energies omitting $J \neq J'$ couplings Nstar Workshop May 2011

Approximate rotational invariance in spectrum,

 \approx same energies with and without $J \neq J'$ couplings

Overall pattern of N* states

Nstar Workshop May 2011

Patterns of Δ states

Nstar Workshop May 2011

Comparison of lattice results for Roper resonance

see also D. Leinweber talk in session I-C today at 17:05

Conclusions

- Spins are identified reliably up to $J = \frac{7}{2}$
 - Covariant derivatives provide orbital angular momenta
 - Approximate rotational invariance is realized at the scale of hadrons
 - Spectral overlaps Z identify which J values dominate a state
- Low N* and Δ bands: same states as $SU(6)\otimes O(3)$ based on $\rho=+$ Dirac spiors
- Patterns of lattice baryonic states are similar to patterns of physical resonance states.
- Lots of lattice states; no signs of chiral restoration

The path forward

- No multiparticle states have been identified so far using three-quark operators
- Multiparticle operators (e.g, πN , $\pi \pi N$) must be added to realize significant couplings of three-quark states and their decay products.
- Moving operators and larger volumes will allow determination of elastic phase shifts using Luscher's formalism.
- Much remains to be learned as m_{π} is lowered toward the physical limit

Nstar Workshop May 2011

Nstar Workshop May 2011